УДК 551.509.313+551.509.324.2+551.508.85

Оперативная технология наукастинга осадков на основе радарных данных и результаты верификации для теплого периода года (май-сентябрь 2017 г.)

А.В. Муравьев, Д.Б. Киктев, А.В. Смирнов

Гидрометеорологический научно-исследовательский центр Российской Федерации, г. Москва, Россия muravev@fmecom.ru

Дается краткое описание развернутой в Гидрометцентре России системы наукастинга осадков, функционирующей в режиме реального времени на основе последовательностей радарных полей, поступающих из Центральной Аэрологической Обсерватории. Расчетной основой системы является статистическая схема STEPS (Short-Term Ensemble Prediction System), построенная как мультипликативная каскадная модель с использованием технологии оптического потока. Демонстрируются результаты точечной и пространственной верификации результатов испытаний системы в теплый период года. Основные выводы относительно качества системы наукастинга совпадают с выводами зарубежных служб, эксплуатирующих данную или сходную статистическую схему наукастинга: в теплое время года полезный прогноз полей осадков возможен на интервале одного-двух часов.

Ключевые слова: наукастинг осадков, радарные осадки, турбулентный мультипликативный каскад, мезомасштабная верификация

Operational precipitation nowcasting system based on radar data and verification results for the warm period of the year (May-September 2017)

A.V. Muravev, D.B. Kiktev, A.V. Smirnov

Hydrometeorological Research Center of Russian Federation, Moscow, Russia muravev@fmecom.ru

The paper carries an overview of the precipitation nowcasting system developed at Hydrometeorological Center of Russia on the basis of consecutive radar fields obtained in the real-time mode from Central Aerological Observatory. The computational core of the system is the statistical STEPS scheme (Short-Term Ensemble Prediction System) constructed as a multiplicative cascade model with an optical flow technology. Results of point-wise and spatial verification of the system tested in the warm period of the year are presented. Main conclusions about the system's quality coincide with conclusions of foreign services that exploit this or similar statistical nowcasting scheme: useful precipitation forecast in the warm period is possible only one-two hours ahead.

Keywords: precipitation nowcasting, radar precipitation estimates, multiplicative turbulent cascade, mesoscale verification

Введение

Понятие «наукастинг» (или прогноз текущей погоды) обычно ассоциируется с экстраполяцией тенденций, выявленных в данных последних наблюдений. Специфичность наукастинга при этом заключается в максимально детализированном описании состояния погоды и в прогнозировании этого состояния на ближайшие несколько часов с использованием только скорости и направления перемещения выделенной погодной системы в предположении, что на интервале прогноза каких-либо существенных погоды изменений не предвидится [3. https://meteoinfo.ru/nowcasting]. В зависимости от существенности изменений заблаговременность наукастинга, или интервал его полезности, составляет от нескольких минут до нескольких часов, с верхним пределом порядка шести часов [3, 5].

Ввиду того, что оценивается лишь скорость и направление перемещения, вполне удовлетворительными для прогнозирования оказываются статистические модели кусочно-линейной экстраполяции, учитывающие эмпирические пространственно-временные связи погодных структур разных масштабов. Для увеличения предсказуемости до 6–12 часов продукция наукастинга комбинируется с выходной продукцией численного прогноза погоды, и в этом случае говорят о сверхкраткосрочном прогнозе.

Возможность экономичной статистической экстраполяции и краткий срок прогноза отнюдь не означают тривиальности задачи наукастинга. Максимально детальное описание текущей погоды требует современных средств наблюдений с большой плотностью и соответствующих численных схем ассимиляции данных, учет неопределенности развивающегося процесса приводит к необходимости ансамблевых или вероятностных прогнозов, а частый цикл выпуска прогнозов невозможен без соответствующих компьютерных мощностей и скоростных сетей передачи данных. А так как основным объектом наукастинга является экстремальная погода, то существенно увеличивается стоимость и промахов, и ложных тревог.

Необходимо отметить, что развитие методологии и технологии наукастинга, наряду с развитием численных моделей высокого пространственного разрешения, стимулировало разработку новых методов верификации, учитывающих мезомасштабный характер процессов и явлений и, в особенности, направленность наукастинга на прогноз экстремальных погодных элементов [6, 9, 10, 12, https://www.r-project.org]. Были разработаны методы и компьютерные средства пространственной верификации (spatial verification), в которой наряду с традиционными показателями качества используются новые, в частности, окрестные (neighborhood) и объектноориентированные (feature, object-oriented) подходы с интерпретацией результатов верификации в терминах информативности и полезности. Для верификации экстремальных величин и предупреждений была разработана теория экстремальной зависимости случайных величин и предложены соответствующие индексы (extremal dependency indices). В течение последних десятилетий в мировой практике наукастинга накоплены разнообразные частные оценки качества, детализированные по погодным характеристикам, физико-географическим особенностям территорий, сезонам, развивающимся крупномасштабным ситуациям и т. д. Из наиболее общих оценок качества можно привести авторитетное заключение английских специалистов о полезности наукастинга осадков в обширных дождевых зонах в зимний период на срок до трех-четырех часов, а в летних грозах лишь до одного-двух часов (https://www.metoffice.gov.uk/learning/making-aforecast/hours-ahead/nowcasting).

Представленная статья содержит краткое описание развернутой в мае 2016 г. в Гидрометцентре России системы наукастинга осадков, функционирующей в режиме реального времени на основе последовательностей радарных полей, поступающих из Центральной аэрологической обсерватории (ЦАО) (https://meteoinfo.ru/nowcasting).

Вычислительной основой является статистическая схема STEPS (Short-Term Ensemble Prediction System) [7], построенная на принципах мультипликативной каскадной турбулентной модели, разработанной в 80х годах прошлого века Лавджоем и Шерцером в приложении к осадкам и облачности [13]. В рамках расчетного алгоритма схемы решаются последовательно следующие задачи: формирование поля адвекции с помощью методов оптического потока, построение каскадов Фурье-разложением исходных полей с использованием полосового фильтра, воспроизведение эволюции во времени линейной моделью авторегрессии.

Схема STEPS генерирует как детерминированные, так и вероятностные прогнозы, при этом вероятностный прогноз строится на основе возмущений начальный каскадов, но может быть построен и с помощью небольшого количества лаговых серий прогнозов. В развернутой схеме вероятностные прогнозы составляются по трем лаговым сериям в той же цикличности, что и оперативные прогнозы, но в настоящее время размещаются только на вычислителе Гидрометцентра России. Для имитации неопределенности радарных наблюдений используется датчик случайных чисел заданной дисперсии, поэтому при повторных стартах от одной и той же пары начальных полей серии незначительно отличаются друг от друга. Ввиду этого схема STEPS является принципиально стохастической моделью, однако ниже такие серии прогнозов будут для краткости называться детерминированными.

В статье приводятся оценки успешности детерминированных прогнозов в теплое время года на 2 ч 30 мин с 10-минутной временной детализацией. Из-за дефицита станционных наблюдений с высокой временной дискретностью на данном этапе в качестве «эталонов» для верификации используются исключительно поля радаров, являющие одновременно начальными полями для схемы STEPS. Для оценки результатов наукастинга использованы рекомендации ВМО по точечной верификации [8, 12] и методы пространственной верификации, позволяющие получать информативные оценки полезности прогнозов с одновременным снижением опасности «двойного штрафа» [9, 10]. Область верификации охватывает зоны обзора девяти допплеровских радаров ДМРЛ-С на Европейской территории России: Курск (RAKU), Тула (RATL), Внуково (RAVN), Воейково (RAVO), Брянск (RUDB), Кострома (RUDK), Смоленск (RUDL), Нижний Новгород (RUDN), Валдай (RUWJ). Оценки успешности прогнозов рассчитываются индивидуально для каждого радара.

Верификация результатов проведена с помощью библиотек языка R, включая тестовый математический пакет пространственной верификации SpatialVx. Для визуализации полей использован графический комплекс Grads.

1. Условия верификации

По периоду верификации с 1 мая по 30 сентября 2017 года было составлено порядка 20 тысяч прогнозов (из примерно 22 тысяч максимально возможных), выпускавшихся через каждые 10 минут.

Область радиолокационного обзора представляет собой круг, вписанный в квадрат размером 500×500 км, шаг исходной сетки равен 1 км, но шаг сетки наукастинга примерно в два раза грубее при размерности прогностического поля, равной 256×256.

Ввиду значительного увеличения погрешности дистанционного зондирования при удалении от радара на расстояние более полутора сотен километров, точечная верификация ограничена квадратной областью со стороной около 120 км, что означает снижение размерности поля до 126×126, или до 24 % точек общей области.

Следует отметить, что точечная оценка качества прогнозов в узлах сетки двухкилометрового разрешения является очень строгой и не всегда оказывается показательной. На практике чаще прибегают к интегральным характеристикам по пространству, получая более благоприятные оценки качества «в среднем по полю», но теряют при этом важные детали пространственных структур [8].

Пространственная верификация проведена по полному полю в 256×256 точек.

Ввиду особенностей статистического распределения 10-минутных сумм осадков, из верификации исключаются те точки пар полей «прогнознаблюдение», в которых значения и прогностических, и наблюденных величин меньше 0,05 мм/ч. Если хотя бы в одной точке это условие нарушается, пара не исключается. Выбор критического порога интенсивности делает верификацию и ее результаты условными в статистическом смысле, при этом объемы выборок сокращаются примерно до 10–15 % от полного набора наблюдений, превращая «оставшиеся осадки» в относительно редкое явление. Следует иметь в виду, что условными оказываются и все статистические характеристики с суммированием: средняя ошибка, средняя квадратическая ошибка, коэффициент корреляции и т. д.

2. Использованные показатели точечной верификации

Перечислим статистические характеристики результатов наукастинга, разделив их условно на общие характеристики, непрерывные и категоризованные показатели качества, приводя их английские сокращения и названия, а также – при наличии – их русскоязычные соответствия:

1) общие статистические характеристики по всему периоду верификации (ACCU – накопленная сумма осадков, AVER – среднее значение, MAX–максимальное значение);

2) показатели качества для непрерывных предиктантов (ME – средняя ошибка, RMSE – средняя квадратическая ошибка, COR – коэффициент корреляции);

3) показатели качества для категоризованных предиктантов, рассчитываемые по таблицам сопряженности (табл. 1):

PC = (a+d)/n - oбщая oправдываемoctь (Proportion Correct);

BIAS = (a+b)/(a+c) – смещение, отношение повторяемостей, систематическая ошибка (Bias);

H = a/(a+c) –доля попаданий, предупрежденность явления (Hit Rate);

FAR = b/(a+b) – отношение ложных тревог (False Alarm Ratio);

 $\mathbf{F} = \mathbf{b}/(\mathbf{b}+\mathbf{d}) -$ доля ложных тревог (False Alarm Rate);

TS = a/(a+b+c) – оценка угрозы, критический индекс успешности, индекс успешности (Threat Score);

 $ETS = GSS = (a-a_{ref})/(a-a_{ref}+b+c)$ – беспристрастная оценка угрозы, критерий Гилберта, критический индекс успешности относительно случайного попадания (Equitable Threat Score, Gilbert Skill Score), $a_{ref} = (a+b)(a+c)/n$;

PSS = H - F - критерий Пирса, критерий Пирса-Обухова Peirce Skill Score;

EDI = (logF - logH)/(logF + logH) – индекс экстремальной зависимости (Extremal Dependence Index).

Общие характеристики рассчитываются отдельно по полям прогнозов и по полям наблюдений, остальные характеристики рассчитываются по парам полей прогноз – наблюдение. Для определения категоризованных предиктантов использованы шесть порогов, нестрогое превышение которых выделяет категорию, или «явление»: 0,5, 1, 2, 4, 8, 12 мм/час. В общей сложности, с учетом 15 прогностических сроков (на 10, 20, ..., 150 мин) и шести порогов рассчитывается 1230 полей статистических характеристик и показателей качества для каждого радара.

Для обобщенной характеристики каждого поля рассчитываются суммарные статистики:

min – минимальное значение;

q25 – квантиль 25 % (первый квартиль);

median – медиана (второй квартиль);

mean – среднее арифметическое значение;

q75 – квантиль 75 % (третий квартиль);

max – максимальное значение;

IQR – интерквартильный размах (q75 – q25);

std – стандартное отклонение;

NA's – количество точек поля с вырожденными значениями (inf, NaN);

valid – количество точек с невырожденными значениями.

Таблица 1. Таблица сопряженности прогнозов и наблюдений явления, наличие которого определено превышением порога *thr* (≥ *thr*), а отсутствие – неравенством < *thr*

Table 1. Contingency table for forecasting and observing the event defined by a threshold exceeding (\geq *thr*), and the absence of the event defined by the inequality (< *thr*)

		Набл	юдение	Сумма
		≥ thr	< thr	
Прогноз ≥ <i>thr</i>		a b		a+b
	< thr	с	d	c+d
Сумма		a+c	b+d	n

Примечание. Обозначения, приведенные в таблице: **a** – количество соответствующих случаев верных прогнозов наличия явления; **b** – количество соответствующих случаев верных прогнозов ложных тревог; **c** – количество пропусков цели; **d** – количество соответствующих случаев верных; **n** – общее количество пар.

Так как квартили выделяют четверти от общего количества точек поля, то они оказываются простейшими пространственными характеристиками значений показателей качества, что используется ниже для определения информативности наукастинга в зависимости от заблаговременности и порога.

При расчете некоторых показателей могут возникать вырожденные значения (деление на нуль или логарифм нуля), что свидетельствует, в первую очередь, о недостаточном объеме выборки для оценок качества указанным показателем. Однако пространственная организация областей вырожденности может содержать дополнительную информацию, например об ослаблении луча или о влиянии местных препятствий ("местников").

2.1. Общие статистические характеристики полей наблюдений и прогнозов

Одним из основных методов оценки качества радарных осадков является сравнение накопленных осадков за длительные периоды времени с соответствующими суммами, полученными наземными средствами наблюдений. В частности, суточные и полусуточные радиолокационные и станционные суммы осадков служат для калибровки ДМРЛ сети ЦАО и для согласования текущих радарных данных с результатами наземных наблюдений [4].

Так как 10-минутные радарные осадки выражены в единицах к мм/час, то результаты их суммирования по часам должны уменьшаться в шесть раз, что необходимо учитывать при сопоставлении с фактическими величинами сумм осадков таких характеристик, как ACCU, ME, RMSE.

Рассмотрим суммарные осадки по радарным данным и по результатам работы системы наукастинга (рис. 1). Отчетливо видно большое разнообразие полей сумм и по величине, и по структуре, при этом наличие лучей и больших секторов с контрастными значениями свидетельствует о сильном влиянии местников. Накопленные суммы радарных осадков можно сопоставить с фактическими данными месячных и сезонных климатологических обзоров (например, http://meteoinfo.ru/climate). Так, по Москве за пять месяцев (май-сентябрь) 2017 года суммы осадков составили 430 мм, что соответствует 430×6=2580 единиц палитры рис. 1. Как видно, соответствующие цвета палитры окружают область вокруг Москвы и северозападный сектор на центральной панели (радар RAVN, Внуково).

Что касается пространственной структуры, то наличие больших зон помех сильно усложняет прогноз экстраполяцией для радаров RUDN (Нижний Новгород), RATL (Тула) и RUDB (Брянск). Помимо влияния местников, наблюдается эффект ослабления, при котором проявляются кольцевые структуры с ослаблением к периферии интенсивности осадков, как это заметно практически по всем радарам, но особенно по RUDK (Кострома) и RAVN (Внуково).

Рассмотрим рис. 2 с накопленной условной суммой прогностических осадков для тех же радаров и для заблаговременности 10 мин. Отчетливо видно, что фильтр схемы STEPS сглаживает и отчасти устраняет дефекты радарных наблюдений

Подтверждение содержится в таблицах суммарных статистик (табл. 2) для синхронизованных полей, в которых красным цветом отмечены выбросы в числовых значениях. Эти выбросы, которые в разной степени проявляются в данных радаров RAKU, RAVN, RAVO, RUDK, RUDN, RUWJ, носят локализованный характер, так как находятся за пределами третьего квартиля и, в частности, не критично влияют на интерквартильный размах и на значения стандартного отклонения, кроме, возможно, радара RAVN (Внуково).

Подозрительными кажутся и слишком малые значения, которые выделены зеленым цветом: радары RAVN, RUDN. Во всех этих случаях фильтр STEPS действует робастно, малые значения завышая, а высокие занижая, при этом выбросы попросту срезает. По значениям всех квантилей для прогностических полей можно сделать вывод, что статистическая модель наблюдаемое количество осадков систематически занижает примерно на 15 мм, что для пяти теплых месяцев является незначительной погрешностью.

OBS, lead = 10 min

тым на Европейской территории России. Единица измерения – [мм], градуировка палитры – [мм·6]. Суммирование pean territory of Russia (ETR). The unit of measurement is [mm], the calibration of palette is [mm·6]. Sums are calculated **Рис. 1.** Накопленные суммы радарных осадков (умноженные на 6) за период 01.05–30.09.2017 по радарам, разверну-Fig. 1. Accumulated precipitation (multiplied by 6) for the 01.05–30.09.2017 period obtained from radars located on the Euroпроводится по тем срокам, по которым имеются синхронизованные прогнозы заблаговременностью 10 минут. over date and time instants with synchronized 10 minutes forecasts present

Таблица 2. Суммарные характеристики полей полных сумм осадков для синхронизованных радарных (OBS) и прогностических (SEQ) данных с заблаговременностью 10 мин

Table 2. Summary characteristics of total accumulated precipitation fields for synchronized radar (OBS) and 10-min projection – data (SEQ)

	min	q25	med	mean	q75	max	std			
		•	RAKU,	Курск		•				
OBS	703	1162	1317	1347	1510	7020	254			
SEQ	705	1034	1197	1280	1495	3140	339			
RATL, Тула										
OBS	154	1091	1383	1298	1595	2560	424			
SEQ	301	960	1257	1240	1562	2263	388			
RAVN, Внуково										
OBS	36	1504	1769	1766	2040	138059	1227			
SEQ	620	1423	1609	1644	1889	2802	396			
			RAVO, B	оейково						
OBS	524	1241	1429	1436	1607	11576	334			
SEQ	841	1282	1400	1377	1498	2329	181			
RUDB, Брянск										
OBS	439	1448	1667	1629	1853	2955	339			
SEQ	534	1393	1599	1564	1767	2847	313			
			RUDK, K	острома						
OBS	892	1740	1907	1948	2117	4830	310			
SEQ	1296	1678	1820	1852	1991	2657	235			
			RUDL, C	моленск						
OBS	1130	1513	1638	1666	1791	3007	213			
SEQ	1011	1399	1509	1552	1656	2377	237			
		RU	IDN, Нижн	ий Новгор	од					
OBS	13	1583	1751	1683	1911	7104	433			
SEQ	93	1624	1763	1739	1933	2809	378			
			RUWJ,	Валдай						
OBS	731	2112	2352	2317	2544	25105	406			
SEQ	1328	2021	2247	2218	2443	3225	326			

Примечание. Красным цветом выделены значения для радаров, в которых были обнаружены сильно завышенные величины – «выбросы», зеленым – подозрительные минимальные значения.

Radar outlier values are colored red. Suspicious minimum values are colored green.

2.2. Непрерывные показатели качества

Продемонстрируем поля средней ошибки (МЕ) и коэффициента корреляции (COR).

Средняя ошибка (ME) свидетельствует о систематическом отклонении прогностических значений, а величина этой ошибки может оцениваться в сравнении со средним значением (AVER, табл. 3) и с климатологией интенсивности осадков в данном регионе. В табл. 3 приведены оценки по полям средних за пять месяцев верификации. Можно видеть вполне удовлетворительное сходство фактических и прогностических интегральных характеристик двух полей, за исключением случаев выбросов и подозрительных минимальных значений, что подтверждается количественно, если в качестве ориентира допустимой систематической ошибки взять первый квартиль наблюдений, который по всем радарам занимает интервал 0,6–1,0 мм/час.

Таблица 3. Суммарные характеристики полей средних сумм осадков для синхронизованных радарных (OBS) и прогностических (SEQ) данных с заблаговременностью 10 мин

	min	q25	med	mean	q75	max	std			
	•	•	RAKU,	, Курск		•				
OBS	0.6	0.9	1.0	1.02	1.1	4.8	0.14			
SEQ	0.6	0.8	0.9	0.96	1.1	1.9	0.17			
RATL, Тула										
OBS	0.2	0.7	0.9	0.85	1.0	1.6	0.24			
SEQ	0.3	0.7	0.8	0.81	0.9	1.5	0.18			
	RAVN, Внуково									
OBS	0.0	0.7	0.8	0.80	0.9	38.4	0.37			
SEQ	0.3	0.7	0.7	0.74	0.8	1.1	0.14			
			RAVO, B	оейково						
OBS	0.3	0.6	0.6	0.66	0.7	4.9	0.13			
SEQ	0.4	0.6	0.6	0.64	0.7	1.0	0.06			
RUDB, Брянск										
OBS	0.4	1.0	1.1	1.08	1.2	2.0	0.19			
SEQ	0.5	0.9	1.0	1.03	1.1	1.8	0.15			
			RUDK, K	острома						
OBS	0.4	0.7	0.7	0.76	0.8	1.9	0.13			
SEQ	0.5	0.7	0.7	0.72	0.8	1.1	0.08			
			RUDL, C	моленск						
OBS	0.6	0.8	0.8	0.84	0.9	1.4	0.08			
SEQ	0.6	0.7	0.8	0.78	0.8	1.1	0.09			
		RU	IDN, Нижн	ий Новгор	од					
OBS	0.0	0.7	0.7	0.71	0.8	2.7	0.17			
SEQ	0.1	0.7	0.8	0.74	0.8	1.1	0.13			
			RUWJ,	Валдай						
OBS	0.3	0.8	0.9	0.86	0.9	9.0	0.13			
SEQ	0.6	0.7	0.8	0.82	0.9	1.2	0.11			

Table 3. Summary characteristics of mean precipitation fields for synchronized radar (OBS) and 10-min projection – data (SEQ)

Примечание. Красным цветом выделены значения для радаров, в которых были обнаружены сильно завышенные величины – «выбросы», зеленым –подозрительные минимальные значения.

Radar outlier values are colored red. Suspicious minimum values are colored green.

Однако распределение фактических осадков в таких пространственновременных масштабах сильно асимметрично и сконцентрировано в узком диапазоне значений, как это видно и по табл. 3, потому понизим допустимую ошибку до 0,5 мм/ч. На рис. 3 поля средней ошибки при заблаговременности 10 мин состоят в основном из «допустимых» значений между -0,5 и +0,5 мм/час.

С ростом заблаговременности интенсивность прогностических осадков начинает систематически снижаться по отношению к факту, и к концу срока прогнозирования появляются обширные области значений за пределом -0,5 мм/час (радары RAVN, RUDB, рис. 4).

Пространственное распределение связных областей систематической ошибки одного знака может быть использовано как для статистической коррекции схемы STEPS, так и для адаптации параметров оптического потока, с помощью которого строится поле адвекции. На рис. 3 и 4 отчетливо обнаруживаются зоны влияния местников и очаги положительной, и особенно отрицательной систематической ошибки. Области положительной ошибки (коричневый цвет, как правило, меньше 0,5 мм/час) становятся более связными с ростом заблаговременности и так же, как и области отрицательных ошибок (между -1,0 и +0,5), формируются в определенной географической зоне (RAVN – к северо-западу от координат радара, RUDB – к юго-западу от координат радара). При этом отрицательные значения ME начинают массово появляться только для двух этих радаров примерно после полутора часов прогноза.

Коэффициент корреляции (COR) не является информативным показателем качества прогноза осадков, однако, как привычная и известная статистика, он используется для предварительной оценки качества и для оценки «практической предсказуемости». Так как ряды осадков в данной временной дискретности коррелированы, воспользуемся эвристическими оценками эффективного количества степеней свободы.

Полная длина временного ряда составляет немногим более 22000 сроков, при этом критический порог интенсивности (осадки менее 0,05 мм/ч не учитываются) сокращает полную выборку примерно до 10–15 %. Оценим объем промежуточной выборки в 2000–3000 значений, откуда, учитывая типичное время эволюции зон осадков примерно в 8 часов [1], получим наиболее осторожную оценку количества «независимых наблюдений» в 250 значений. Доверительные пределы 95%-ного двустороннего критерия для теоретической нулевой корреляции заключены в интервале 0,1– 0,15 [2, табл. 4.5 в], который будем считать диапазоном критических значений COR.

На рис. 5 представлены поля показателя СОR для заблаговременности 10 мин. Видно, что все поля залиты в основном цветами положительной корреляции со значениями от 0,10 до 0,80. Заметны такие пространственные особенности, как кольцевые структуры (RUDK, RAVN, RUDB, RUDL, RATL) и даже снижение корреляции при приближении к радару (RUDK).

pairs.

The unit of measurement is [mm], the calibration of palette is [mm.6]. ME is calculated for synchronized forecast – observation pairs.

Fig. 5 Correlation coefficient of precipitation intensity nowcasts 10 minutes ahead and corresponding radar observations for the 01.05-30.07.2017 period on the ETR.

Fig. 6. Correlation coefficient of precipitation intensity nowcasts 150 minutes ahead and corresponding radar observations for the 01.05-30.07.2017 period on the ETR. Начиная с некоторой (разной для разных радаров) заблаговременности, значения COR становятся отрицательными, но не менее -0,1 (рис. 6). При этом увеличение областей отрицательных значений происходит в некоторых географически локализованных зонах. Как видно на рис. 6, области положительных и отрицательных значений для некоторых радаров оказываются связными, географически локализованными и могут быть использованы для коррекции результатов прогнозов схемы STEPS.

Табл. 4 дает представление о «потенциальной информативности» системы наукастинга в виде общих характеристик распределения показателя COR по полю. Зеленым цветом выделяются значения $COR \ge 0,1$, розовым цветом выделяются значения $COR \ge 0,15$. Столбцы квантилей (q25, med, q75) задают точную долю полной площади со значениями COR, превышающими заданный уровень.

Остальные статистические характеристики (min, mean, max, IQR, std) дают важные дополнительные сведения о распределении показателя по полю, например, интеквартильный размах показывает, в каком диапазоне значений показателя СОR содержится половина всех точек поля.

Учитывая заблаговременности, получим оценки потенциальной предсказуемости системы наукастинга по показателю COR в долях общей площади, содержащей данный уровень значимой корреляции (табл. 5).

Таблица 4. Суммарные характеристики полей коэффициента корреляции интенсивности осадков для синхронизованных радарных и прогностических данных с заблаговременностью 10 мин. СОК в диапазоне 0,1 (зеленый) – 0.15 (розовый)

Радар	lead	min	q25	med	mean	q75	max	IQR	std
	010	-0.03	0.15	0.20	0.21	0.26	0.69	0.11	0.08
RAKU	020	-0.04	0.11	0.15	0.16	0.20	0.51	0.09	0.07
	030	-0.03	0.08	0.12	0.13	0.16	0.55	0.08	0.07
	040	-0.03	0.06	0.09	0.10	0.13	0.52	0.07	0.06
	050	-0.02	0.05	0.08	0.09	0.11	0.49	0.06	0.06
	010	0.01	0.20	0.26	0.26	0.32	0.80	0.12	0.09
RATL	020	0.00	0.15	0.20	0.21	0.26	0.87	0.11	0.08
	030	0.00	0.12	0.16	0.17	0.22	0.84	0.10	0.08
	040	-0.01	0.09	0.13	0.14	0.18	0.57	0.09	0.07
	050	-0.02	0.07	0.11	0.12	0.16	0.54	0.09	0.07
	060	-0.02	0.05	0.09	0.10	0.13	0.54	0.08	0.06
	070	-0.02	0.04	0.07	0.08	0.11	0.43	0.07	0.05
	080	-0.02	0.03	0.06	0.07	0.10	0.52	0.07	0.05
	010	0.00	0.20	0.25	0.26	0.31	0.75	0.11	0.08
RAVN	020	-0.02	0.15	0.20	0.21	0.25	0.70	0.10	0.07
	030	-0.01	0.12	0.16	0.17	0.21	0.51	0.09	0.07
	040	-0.01	0.10	0.14	0.14	0.18	0.53	0.08	0.06
	050	-0.01	0.08	0.11	0.12	0.15	0.53	0.07	0.06
	060	-0.03	0.06	0.09	0.10	0.13	0.44	0.07	0.05
	070	-0.03	0.05	0.07	0.08	0.11	0.45	0.06	0.05

Table 4. Summary characteristics of precipitation intensity correlation for syn-
chronized radar and 10 minutes forecast data. Critical COR levels are given in
the range of 0.1 (green) and 0.15 (pink)

Радар	lead	min	q25	med	mean	q75	max	IQR	std
	010	-0.02	0.22	0.28	0.28	0.34	0.79	0.12	0.09
RAVO	020	-0.02	0.17	0.22	0.23	0.28	0.69	0.11	0.08
	030	-0.01	0.14	0.19	0.19	0.24	0.54	0.10	0.07
	040	-0.02	0.12	0.16	0.16	0.20	0.70	0.08	0.07
	050	-0.01	0.10	0.14	0.14	0.18	0.54	0.08	0.06
	060	-0.02	0.08	0.12	0.12	0.16	0.40	0.08	0.05
	070	-0.02	0.07	0.10	0.11	0.14	0.52	0.07	0.05
	080	-0.02	0.06	0.09	0.09	0.12	0.52	0.06	0.05
	090	-0.02	0.05	0.07	0.08	0.11	0.46	0.06	0.05
	100	-0.02	0.04	0.06	0.07	0.10	0.52	0.06	0.04
	010	0.01	0.20	0.25	0.26	0.31	0.71	0.11	0.09
RUDB	020	0.01	0.15	0.20	0.20	0.25	0.66	0.10	0.08
	030	0.00	0.12	0.16	0.17	0.21	0.62	0.09	0.07
	040	-0.01	0.10	0.13	0.14	0.18	0.75	0.08	0.06
	050	-0.01	0.08	0.11	0.12	0.15	0.75	0.07	0.06
	060	-0.01	0.06	0.09	0.10	0.13	0.60	0.07	0.05
	070	-0.02	0.05	0.08	0.08	0.11	0.40	0.06	0.05
	010	0.00	0.16	0.22	0.22	0.28	0.80	0.12	0.09
RUDK	020	-0.01	0.12	0.17	0.18	0.23	0.66	0.11	0.08
	030	0.00	0.10	0.14	0.15	0.19	0.50	0.09	0.07
	040	-0.01	0.08	0.12	0.12	0.16	0.58	0.08	0.06
	050	-0.01	0.06	0.10	0.10	0.14	0.49	0.08	0.05
	060	-0.01	0.05	0.08	0.09	0.012	0.38	0.07	0.05
	070	-0.01	0.04	0.07	0.07	0.10	0.37	0.06	0.04
	010	0.01	0.21	0.26	0.27	0.32	0.64	0.11	0.08
RUDL	020	0.02	0.17	0.22	0.22	0.27	0.55	0.10	0.07
	030	0.02	0.14	0.18	0.19	0.23	0.58	0.09	0.07
	040	0.01	0.11	0.15	0.16	0.20	0.65	0.09	0.06
	050	0.00	0.09	0.13	0.14	0.17	0.45	0.08	0.06
	060	0.00	0.07	0.11	0.12	0.15	0.38	0.08	0.05
	070	0.00	0.06	0.09	0.10	0.13	0.39	0.07	0.05
	080	-0.01	0.05	0.08	0.09	0.12	0.35	0.07	0.05
	090	-0.02	0.04	0.07	0.08	0.10	0.39	0.06	0.05
	010	-0.15	0.16	0.21	0.22	0.27	0.70	0.11	0.08
RUDN	020	-0.11	0.13	0.17	0.17	0.22	0.59	0.09	0.07
	030	-0.11	0.10	0.14	0.14	0.18	0.52	0.08	0.06
	040	-0.09	0.08	0.12	0.12	0.15	0.54	0.07	0.05
	050	-0.10	0.07	0.10	0.10	0.13	0.44	0.06	0.05
	060	-0.10	0.06	0.08	0.09	0.11	0.39	0.05	0.05
	070	-0.10	0.04	0.07	0.07	0.10	0.53	0.06	0.04
	010	0.00	0.22	0.27	0.27	0.32	0.63	0.10	0.08
RUWJ	020	0.00	0.18	0.22	0.22	0.26	0.56	0.08	0.06
	030	-0.01	0.15	0.19	0.19	0.23	0.48	0.08	0.06
	040	-0.01	0.13	0.16	0.16	0.20	0.49	0.07	0.05
	050	-0.01	0.11	0.14	0.14	0.17	0.42	0.06	0.05
	060	-0.01	0.09	0.12	0.12	0.15	0.39	0.06	0.05
	070	-0.01	0.07	0.10	0.11	0.13	0.45	0.06	0.04
	080	-0.01	0.06	0.09	0.09	0.11	0.42	0.05	0.04
	090	0.00	0.05	0.07	0.08	0.10	0.44	0.05	0.04

Как видно в табл. 5, потенциальная предсказуемость для разных радаров и для площадей не менее четверти от общей площади верификации оказывается довольно разнообразной (от 10 до 100 минут). Полученные результаты в общем подтверждают выводы метеослужбы Великобритании о том, что метод статистической экстраполяции оказывается полезным для прогноза осадков в летний период лишь на интервале до 1–2 часов (https://www.metoffice.gov.uk/learning/making-a-forecast/hoursahead/nowcasting).

Таблица 5. Предел информативного прогноза системы наукастинга (в десятках минут) и для заданной доли площади (в процентах) по показателю COR Table 5. Informative forecast limit of the nowcasting scheme (in tens of minutes) and for the given area fraction (in %), based on COR

		Критиче	ский урове	нь показателя COR			
Dagan		0.10			0.15		
Радар		Доля площа	ади, занима	емой значе	ниями COR	2	
		не	ниже крити	ческого уро	вня		
	75%	50%	25%	75%	50%	25%	
RAKU	20	30	50	10	20	30	
RATL	30	50	80	20	30	50	
RAVN	40	50	70	20	30	50	
RAVO	50	70	100	20	40	60	
RUDB	40	50	70	20	30	40	
RUDK	30	50	70	10	20	40	
RUDL	40	60	90	20	40	60	
RUDN	30	50	70	10	20	30	
RUWJ	50	70	90	30	40	60	

2.3. Категоризованные показатели качества

В данном разделе приведены результаты оценок качества с помощью показателей PSS (критерий Пирса-Обухова) и EDI (индекс экстремальной зависимости) для градации осадков не менее 4 мм/ч. Такая градация с вложенными в нее более сильными интенсивностями оказалась статистически наиболее обеспеченной для имеющегося архива данных верификации.

С помощью оценки доверительных интервалов для характеристик таблицы сопряженности (например, [11]) и некоторых эвристических соображений, примененных к таблицам сопряженностей для порога 4 мм/ч, в качестве критических уровней ненулевых значений взяты PSS = 0,1 и EDI = 0,3. В табл. 6 собраны оценки информативного предела предсказуемости для этих двух показателей. Как видно, на основе показателя PSS прогнозы категории ≥ 4 мм/ч с качеством не менее 0,1 и по 75 % площади

оказываются полезными при заблаговременностях от 20 до 70 мин, по 50 % площади – от 40 до 90 мин, а по 25 % площади – от 80 до 120 мин.

Следует подчеркнуть, что данная граница, как и в случае показателя COR, является нижней и по выделенной территории имеются зоны с более высокими показателями качества. Если использовать показатель EDI, то оценка интервала полезного прогноза окажется ниже, что делает данный показатель более строгим по сравнению с PSS: интервалы полезного прогноза составляют, соответственно, 20–50, 30–70 и 60–90 мин по площадям 75, 50 и 25 % от общей площади области верификации вокруг отдельного радара.

Таблица 6. Предел информативного прогноза системы наукастинга (в десятках минут) и для заданной доли площади (в процентах) по показателю PSS и EDI для порога 4 мм/ч

	Категоризованные показатели для порога 4 мм/ч									
Радар		PSS (0.1)			EDI (0.3)					
	Доля площади, занимаемой значениями									
		не і	ниже критич	еского уро	вня					
	75%	75% 50% 25% 75% 50% 25%								
RAKU	40	60	100	20	30	60				
RATL	40	60	90	30	50	80				
RAVN	40	60	80	40	50	70				
RAVO	40	60	100	20	50	90				
RUDB	70	90	120	50	70	90				
RUDK	30	50	80	30	40	70				
RUDL	40	70	100	30	60	90				
RUDN	20	40	80	20	30	60				
RUWJ	60	90	110	50	70	90				

Table 6. Informative forecast limit of the nowcasting scheme (in tens of minutes) and for the given area fraction (in %) based on PSS and EDI for 4 mm/h threshold

Из расчетов видно, что статистически обеспеченной оказывается категория ≥ 4 мм/ч, а более высокие пороги, прогноз превышения которых имеет особое значение для предупреждений об опасных явлениях, таковыми не являются. Как известно, показатель Пирса-Обухова при уменьшающейся повторяемости явления стремится к доле попаданий (H), в то время как индекс экстремальной зависимости при довольно общих предположениях стабилизируется на некотором ненулевом уровне [6]. При недостаточных объемах выборок в таблицах сопряженностей для высоких порогов (например, 8 и 12 мм/ч) возникают вырожденные (нулевые) ячейки, отчего PSS стремится к H, а EDI становится невычислимым. Вышеупомянутые эффекты и дефекты связаны со строгостью и ограниченностью точечной верификации и могут быть преодолены с помощью пространственной верификации, позволяющих методов выделять

пространственные масштабы сетки, для которых прогноз может считаться наиболее полезным. Для этих целей рекомендуется, например, показатель окрестной верификации FSS (fractions skill score), который можно назвать «критерием пространственных долей» и который является обобщением известного критерия Брайера в вероятностных прогнозах [8].

2.4. Выводы по результатам точечной верификации наукастинга осадков

Проведенные точечные оценки позволяют сделать несколько выводов.

Во-первых, существует проблема качества радиолокационных данных, особенно из-за наличия местников, критически влияющих на точечные оценки. Однако валидация этих данных с помощью станционных наблюдений в сопоставимых пространственно-временных масштабах в настоящее время затруднительна из-за дефицита таких наблюдений.

Во-вторых, оцененная информативность прогнозов для большинства локаторов составляет в среднем около одного часа или чуть больше, при этом статистически значимые характеристики качества относятся к интенсивностям осадков не выше, чем ≥ 4 мм/ч. Для оценок качества прогнозов экстремальных значений, например выше 8 или 12 мм/ч, требуются другие объемы выборок и иные методы верификации.

Наконец, в-третьих, некоторые обнаруженные недостатки прогнозов носят систематический характер и могут быть устранены методами статистической коррекции.

3. Пространственная верификация

Современные методы пространственной верификации были разработаны для преодоления так называемого «двойного штрафа» (double penalty), к которому приводили стандартные оценки качества не очень точных, но полезных прогнозов пространственных объектов («типов», «элементов», «особенностей») «за наблюденное, но не предсказанное, и за предсказанное, но не наблюденное» [10, гл. 6]. Несправедливость двойного наказания стала особенно заметной при увеличении пространственного разрешения в численных моделях, когда более грубая модель, не способная предсказывать «объект» внутри ячейки своей сетки, штрафовалась лишь единожды – «за наблюденное, но не предсказанное».

В данной статье представлены результаты применения программного комплекса SpatialVx, разработанного Э. Гиллеландом (США) и пока еще находящегося в стадии тестирования (https://cran.r-project.org/ web/packages/SpatialVx/SpatialVx.pdf). Здесь использованы те модули комплекса, которые достаточно просты и уже проверены заинтересованным сообществом исследователей, в частности «объектно-ориентированный» модуль SpatialVx.craer, уже апробированный в нескольких системах

верификации, например в METMODE (NCAR RAL, США) и в CRA ([9], Австралия).

Подчеркнем, что ввиду экспериментальности комплекса SpatialVx и недостаточной практики работы с многочисленными настроечными параметрами комплекса, представленные результаты пространственной верификации являются предварительными.

Вначале определяются ключевые параметры настройки комплекса SpatialVx. Для выделения «объектов» задается порог интенсивности, который очерчивает области достаточной связности (желательно с небольшим количеством внутренних дыр). Так как в мелкой сетке радарного поля области осадков представляют собой образования чрезвычайной пространственной изменчивости с фрактальными границами, то для выделения разумных границ требуется дополнительная процедура сглаживания. Сглаживание производится «параметром конволюции», равным количеству точек сетки, составляющих радиус осреднения. В полях осадков существует, как правило, множество мелких связных областей, автоматически идентифицируемых как «объекты верификации», но сильно затрудняющих и расчеты, и интерпретацию результатов. Чтобы избежать чрезмерного обилия объектов, вводятся параметры, ограничивающие количество внутренних точек выделяемой области связности. Здесь заданы следующие параметры: порог – 1 мм/ч, радиус конволюции – 9 точек (эквивалент 18 км), минимальный размер – 1225 точек (эквивалент квадрата 35×35 или 70×70 км). Иногда полезно задать максимальный размер, например в четверть общей области.

После идентификации «объектов» в поле наблюдения и в поле прогноза производится их «спаривание» и рассчитываются следующие статистические характеристики: координаты горизонтального сдвига по х и у (x_shift, y_shift), полный средний квадрат ошибки (MSE.total) и его разложения на составляющие по сдвигу (MSE.shift), расположению (MSE.displacement), объему (MSE.volume) и форме (MSE.pattern). Точные определения этих характеристик даны в статье [9].

Ниже рассмотрим в основном характеристики сдвига, означающего такое перемещение прогностического объекта (как твердого плоского тела) в сторону наблюдаемого объекта (с возможным вращением), которое минимизирует некоторый функционал качества совмещения (как правило, сумму квадратов разностей).

Перемещение производится по вектору между «центрами тяжести» двух объектов (центроидами), поэтому значения смещений по долготе и широте имеют вещественный вид большей точности, чем целые единицы размерности сетки. А так как вращение сопоставляет главные оси приближаемых эллипсов, то суммарный квадрат ошибки после смещения может вырасти, делая знак MSE.displacement отрицательным и тем самым отчасти нарушая общую оптимальность смещения в угоду лучшего совпадения форм.

Для определения «допустимых ошибок» в горизонтальном сдвиге приходится также прибегать к некоторой эвристике. Воспользуемся для этого площадью пересечения двух объектов: чем меньше эта площадь, тем больше ошибка. Представив объекты в виде кругов или квадратов, можно оценить критическое пересечение некоторой линейной мерой смещения, например, совпадающей с типичным размером объекта. Тогда при минимальном размере объекта в 70×70 км критическим уровнем ошибки окажется столько единиц смещения по отдельным осям, корень квадратный из суммы квадратов которых окажется равным примерно 35 единицам.

Рассмотрим результаты анализа одной ситуации (case study) и предложим метод суммарной оценки качества прогноза объектов по набору ситуаций и по непрерывному периоду времени.

3.1. Анализ отдельного случая

Ураган 29 мая 2017 года в Москве предоставил богатый материал для анализа как развивающихся процессов, так и полученных полей наукастинга осадков, хотя ключевым метеорологическим параметром в этот день был порывистый ветер с рекордными скоростями.

На рис. 7 демонстрируются поля интенсивности осадков по наблюдениям радара Внуково (RAVN) начиная с 15:40 (а, в) и по результатам прогноза схемой STEPS на сроки 10 и 40 мин (б, г). В нижней части рисунка прилагается результат идентификации и спаривания объектов, полученный программой SpatialVx (д).

Прежде всего заметно, что прогностические поля более сглажены благодаря пространственной фильтрации в схеме STEPS. Затем по радарным полям можно оценить, что в течение 40 мин погодная система перемещается на восток, примерно на 50 км, в то время как прогностическое поле смещается в том же направлении, но на меньшее расстояние. Наконец, заметно различие в отдельных областях эволюции интенсивности осадков. Так, в наблюдениях уже в начале прогностического срока севернее Клина вплоть до Твери формируется полоса сильных осадков, примерно через полчаса идентифицируемая пакетом SpatialVx как новый объект (д), но который никакая статистическая интерполяция воспроизвести не может. Хорошо также видно, насколько объекты, выделяемые SpatialVx, схематичнее и грубее соответствующих областей в радарных и прогностических полях.

В табл. 7 приводятся соответствующие объектно-ориентированные оценки качества для всех заблаговременностей (ilead). Повтор заблаговременности означает наличие дополнительной пары спаренных объектов. Если исключить вариант ложного согласования объектов на первых 10 минутах (сдвиги -39.30 и -55.22), то по сдвигам можно считать вполне удовлетворительным прогнозирование выделенных объектов сроком до 50 минут. Далее начинает расти ошибка положения по долготе (x_shift), полный средний квадрат ошибки (MSE.total), ошибки по объему и форме (MSE.volume, MSE.pattern). При этом систематически снижается ошибка по широте (y shift).

Рис. 7. Поля осадков по радару RAVN (Внуково) за сроки 2017.05.29_15.40 и 16.10 (а, в), синхронизованные поля наукастинга с помощью схемы STEPS на 10 и 40 мин (б, г) и выделенные пакетом SpatialVx «объекты» в соответствующих полях за 16:10 и 40 мин заблаговременности (д). Границы объектов проведены на основе изолинии 1 мм/ч, радиус пространственного осреднения равен 9 единиц сетки, минимальный размер объектов равен 35х35 точек. Одинаковым цветом обозначены пары спаренных полей, по которым рассчитываются характеристики объектно-ориентированной верификации.

Fig. 7. Precipitation fields from RAVN radar (Vnukovo) at 2017.05.29_15.40 and 16.10 (a, B), synchronized nowcasting fields generated by the STEPS scheme at 10 and 40 minutes lead-time (δ , r) and "objects" identified by SpatialVx package in corresponding fields at 16:10 and 40 minutes lead-time (α). Object boarders are defined by the 1 mm/h isoline, the convolution radius equals 9 grid units, minimum size is defined by 35x35 points. Paired fields for which object-oriented statistics are calculated have the same color.

д)

Таблица 7. Результаты применения пакета SpatialVx для объектноориентированной верификации наукастинга 2017.05.29_15.30 на 2.5 часа по области обзора радара RAVN (Внуково)

 Table 7. Numerical output of the SpatialVx package for object-oriented verification

 of the 2017.05.29_15.30 nowcasts for 2.5 hours period in the RAVN radar coverage

 area (Vnukovo)

ilead	x_shift	y_shift	MSE.total	MSE.shift	MSE.displ	MSE.vol	MSE.pattn
1	12.51	17.39	3.0968	2.8209	0.2759	0.0072	2.8137
1	-39.30	-55.22	1.1544	0.8879	0.2665	8000.0	0.8872
2	2.58	-5.63	6.3732	6.5008	-0.1277	0.0184	6.4824
3	14.96	23.63	2.4008	1.9987	0.4021	0.0078	1.9909
4	15.39	22.79	2.2373	1.9819	0.2554	0.0090	1.9729
4	-9.78	-30.76	9.8393	9.2537	0.5857	0.0001	9.2536
5	21.99	-15.58	10.3552	10.9114	-0.5562	0.0172	10.8942
6	45.85	-27.76	11.1895	11.5672	-0.3776	0.0440	11.5232
7	41.48	-22.83	9.9160	9.7379	0.1781	0.0779	9.6600
8	69.05	-36.51	8.2263	7.7454	0.4809	0.1448	7.6006
9	76.12	-30.70	8.1989	7.0923	1.1066	0.1608	6.9315
10	73.31	-18.60	8.6644	7.6121	1.0524	0.1277	7.4844
11	76.14	-15.63	8.7054	10.9510	-2.2457	0.2273	10.7237
12	77.82	-15.09	8.9470	25.9090	-16.9620	0.5888	25.3202
13	79.11	-11.81	8.2814	14.8719	-6.5905	0.3390	14.5329
14	78.64	8.95	8.1216	14.3965	-6.2749	0.3734	14.0231
15	100.43	1.24	8.5237	19.6665	-11.1428	0.7572	18.9093

Примечание. Обозначения, приведенные в таблице: ilead – заблаговременность (десятки минут), совпадающие значения относятся к разным парам объектов; x_shift, y_shift – сдвиг по долготам и широтам, MSE.total - полный средний квадрат ошибки, MSE.shift - составляющая по сдвигу, MSE.displacement составляющая по расположению, MSE.volume – составляющая по объему, MSE.pattern - составляющая по форме. Сдвиги – в единицах сетки (1 ед=2 км), квадрат ошибки и составляющие – в [мм/час]².

3.2. Суммарный анализ смещения прогностических объектов по наборам выделенных ситуаций

Суммарные оценки результатов объектно-ориентированной верификации проведены по 166 ситуациям с большими областями интенсивных осадков за период май-июль 2017 года. Такие оценки, аналогичные одноименным статистикам точечной верификации, дают представление о количестве пар соответствующих объектов, удовлетворяющих тем или иным диапазонам значений критерия качества. Напомним, критерием качества служит эвристическое определение полезного прогноза через линейную меру смещения (п. 3.1).

Для экономии места ограничим заблаговременность одним часом. По значениям характеристик табл. 8 и 9 можно сделать несколько содержательных выводов, относящихся явно к качеству наукастинга с помощью схемы STEPS, и неявно – к особенностям тестового пакета SpatialVx при спаривании объектов и расчете ошибок расположения. Таблица 8. Суммарные характеристики сдвига по долготе объектов (x_shift), выделенных с помощью SpatialVx. В скобках около индексов радаров указано количество прогнозов внутри отмеченных ситуаций. Суммарные характеристики описаны в разделе 2

Table 8. Summary characteristics of the longitudinal shift of objects (x_shift) identified by SpatialVx. Forecast number inside selected situations is in brackets near radar IDs. Summary characteristics are in chapter 2

Радар	ilead	min	q25	med	mean	q75	max
RAKU(14)	1	-15.280	-7.620	-2.680	-0.609	3.990	16.730
	2	-23.480	-9.408	-2.505	-1.519	5.140	18.240
	3	-25.920	-9.505	-5.345	-3.125	0.588	30.640
	4	-33.920	-9.970	-0.940	-0.467	6.923	32.660
	5	-50.030	-17.730	-5.530	-6.011	7.145	32.350
	6	-43.530	-19.230	-4.490	-1.933	18.115	30.640
RATL(16)	1	-11.900	-0.790	1.690	1.320	4.795	9.670
	2	-13.140	-1.395	2.560	4.016	9.245	35.600
	3	-19.340	-3.713	0.290	0.387	7.072	10.800
	4	-20.900	-11.015	-0.040	-2.928	4.312	11.060
	5	-32.280	-14.027	-0.960	-2.524	9.157	20.550
	6	-46.520	-14.072	-1.040	-3.085	7.465	23.910
RAVN(20)	1	-17.790	-5.652	-1.890	-1.479	2.720	16.970
	2	-20.260	-6.620	-2.235	-0.933	2.623	36.950
	3	-21.870	-3.623	-1.165	0.418	7.462	30.540
	4	-32.460	-8.592	-0.845	-2.917	1.445	29.590
	5	-32.050	-10.977	-2.200	-1.934	7.008	29.330
	6	-38.140	-21.660	-5.350	-5.637	6.595	27.340
RAVO(13)	1	-16.230	-8.510	-3.230	-3.863	0.290	6.600
	2	-20.160	-4.500	-2.490	-2.858	1.410	8.300
	3	-26.980	-5.000	-3.770	-3.551	1.020	8.980
	4	-27.310	-8.250	-6.030	-4.469	1.550	9.420
	5	-36.330	-10.350	-6.790	-8.233	3.620	7.390
	6	-57.870	-10.090	-6.820	-5.068	5.060	46.940
RUDB(23)	1	-13.400	-2.223	4.645	6.532	13.878	29.350
-	2	-15.450	-5.940	5.090	7.085	17.490	38.960
	3	-15.970	-4.567	4.255	6.739	19.137	31.860
-	4	-16.020	-5.380	5.990	5.894	18.810	33.410
-	5	-17.370	-1.450	9.115	8.298	19.590	30.600
	6	-17.500	-4.950	8.595	7.341	17.848	34.060
RUDK(19)	1	-29.870	-1.130	0.470	2.206	9.217	39.390
	2	-34.580	-2.530	2.465	1.197	10.520	23.170
-	3	-23.870	-2.915	3.055	3.016	11.697	25.670
	4	-26.530	-4.120	4.165	2.662	11.652	31.410
	5	-23.920	-3.980	3.290	2.348	10.010	35.720
	6	-31.950	-0.570	4.090	4.164	11.400	37.150
RUDL(18)	1	-25.320	-11.235	0.845	-1.585	7.787	14.130
	2	-26.220	-10.102	1.460	-0.729	8.322	19.670
	3	-16.860	-2.215	0.720	4.290	12.235	38.430
	4	-17.280	-4.335	0.485	4.185	12.410	38.870
	5	-20.200	-5.190	-2.300	1.548	11.367	32.300
	6	-24.860	-7.555	-4.195	-0.507	10.568	29.750

Радар	ilead	min	q25	med	mean	q75	max
RUDN(19)	1	-23.370	-10.170	2.160	-0.535	8.410	14.470
	2	-21.800	-10.723	-0.825	0.095	10.163	32.090
	3	-19.700	-9.580	-1.820	-0.821	4.950	24.320
	4	-18.430	-10.280	4.390	3.066	9.830	57.310
	5	-22.580	-5.842	2.985	4.917	11.332	58.510
	6	-35.680	-6.595	3.915	6.768	21.810	64.090
RUWJ(24)	1	-13.950	-4.720	-0.500	0.969	4.930	22.880
	2	-17.220	-8.370	-0.900	0.908	5.590	28.970
	3	-22.360	-9.760	0.220	2.218	7.720	47.030
	4	-23.380	-6.660	-3.480	1.182	6.220	51.890
	5	-25.530	-9.330	-2.205	0.019	6.555	35.580
	6	-32.770	-13.308	-3.940	-0.658	10.255	37.960

Таблица 9. Суммарные характеристики сдвига по широте объектов (y_shift), выделенных с помощью SpatialVx. Суммарные характеристики описаны в разделе 2

Table 9. Summary characteristics of the latitudinal shift of objects (y_shift) identified by SpatialVx. Summary characteristics are in chapter 2

Радар	ilead	min	q25	med	mean	q75	max
RAKU(14)	1	-11.660	-5.530	1.090	2.127	10.910	18.650
	2	-8.280	-2.113	0.420	4.237	7.397	24.520
	3	-17.700	-3.618	0.555	4.241	13.570	27.110
	4	-22.410	-5.715	-0.300	1.494	6.180	23.810
	5	-26.740	-4.260	4.980	5.939	17.657	34.460
	6	-29.950	-0.180	7.200	7.491	17.800	39.580
RATL(16)	1	-8.780	-1.715	2.740	3.173	8.640	15.450
	2	-9.540	-1.475	3.920	3.065	8.700	12.590
	3	-12.460	-1.560	6.260	3.842	9.013	18.590
	4	-14.470	-3.268	8.210	5.179	13.540	17.750
	5	-14.980	-1.228	9.575	6.199	13.728	29.200
	6	-17.380	0.072	6.195	5.195	11.762	29.570
RAVN(20)	1	-21.640	-0.263	4.430	5.831	8.375	31.480
	2	-22.230	-0.557	5.520	6.826	9.737	37.370
	3	-19.750	-1.875	4.215	7.121	13.367	47.800
	4	-17.600	-2.608	3.360	7.212	12.335	54.510
	5	-19.580	-1.625	3.390	8.736	22.145	55.360
	6	-30.470	-3.508	4.555	7.888	19.242	55.900
RAVO(13)	1	-11.820	-5.210	-2.120	-0.921	3.450	12.930
	2	-11.460	-3.610	-3.610	-1.014	3.090	19.600
	3	-15.280	-8.430	-3.490	-0.217	5.860	15.320
	4	-16.190	-6.290	-0.570	0.502	5.410	20.150
	5	-16.450	-5.960	-3.700	0.072	5.840	27.780
	6	-37.850	-4.170	1.940	1.053	4.560	36.760
RUDB(23)	1	-34.540	2.295	8.065	7.355	14.660	28.280
	2	-43.050	5.080	9.560	8.557	14.600	35.420
	3	-35.230	5.088	9.305	9.914	15.150	40.190
[4	-8.440	4.080	10.730	12.216	18.300	39.480
	5	-39.890	4.095	10.580	11.185	18.502	44.650
	6	-12.180	6.460	9.700	13.438	19.810	50.660

Радар	ilead	min	q25	med	mean	q75	max
RUDK(19)	1	-25.310	-3.333	2.260	6.082	13.647	58.160
	2	-23.690	-0.045	4.975	6.619	14.295	66.490
	3	-53.010	-0.363	1.770	5.979	15.488	65.290
	4	-48.700	-2.853	3.550	5.580	13.730	59.030
	5	-50.930	-1.200	3.340	4.821	15.180	59.310
	6	-57.940	-0.930	2.920	6.497	23.410	60.940
RUDL(18)	1	-75.280	-2.917	4.795	-0.279	11.938	29.360
	2	-63.560	-1.965	9.075	1.560	14.288	17.790
	3	-76.250	-0.105	10.490	4.770	16.455	45.000
	4	-63.290	-5.003	10.810	4.438	16.305	47.330
	5	-22.370	-2.522	12.165	9.516	17.843	42.200
	6	-49.310	-7.750	13.040	3.865	19.515	33.900
RUDN(19)	1	-20.580	-5.535	-0.525	-0.689	6.450	22.150
	2	-20.160	-4.173	1.565	3.289	10.640	30.000
	3	-24.740	-2.320	0.290	4.072	13.940	31.980
	4	-16.890	-3.670	-0.120	2.678	8.860	32.770
	5	-18.760	-2.735	2.160	3.586	11.630	30.920
	6	-37.300	-12.465	-0.005	0.265	11.710	48.870
RUWJ(24)	1	-36.750	1.240	3.610	5.100	11.250	25.510
	2	-40.050	0.140	4.590	6.656	14.470	29.970
	3	-38.360	0.730	8.900	9.473	22.140	35.090
	4	-17.510	0.420	10.320	9.816	16.120	40.860
	5	-18.860	-1.010	9.095	9.946	15.887	49.760
	6	-21.160	-1.365	7.620	9.726	16.887	55.990

Во-первых, по знакам и величинам медианы и средней можно судить о симметричности или асимметричности распределения и о преимущественном знаке соответствующего сдвига, характеризующем систематику прогноза объектов данного масштаба. Симметрия дополнительно подтверждается значениями экстремумов и двух квартилей. Так, например, для радара RAKU (Курск) систематический сдвиг по широте (y_shift) в основном положителен и составляет величину порядка 10 км (на север), а по долготе (x_shift) – в основном отрицателен и составляет величину порядка 5 км (на запад). Сдвиг на север характерен для всех радаров, если судить по значениям и знакам средней (mean). Сдвиг по широте более разнообразен и иногда меняет знак с ростом заблаговременности, как, например, в случае RATL (Тула) и RUDL (Смоленск).

Во-вторых, экстремальные значения (min и max) свидетельствуют о максимальных ошибках, которые на часовом прогностическом интервале могут достигать 100 и более километров. Однако многие из таких ошибок вызваны особенностями пакета SpatialVx в указании пар соответствующих объектов, как это имело место при анализе случая урагана в Москве 29 мая 2017 года. Иногда ошибки порождаются геометрическими свойствами объектов, например, большой протяженностью или сильной искривленностью, которые, как отмечалось выше, затрудняют оптимальное смещение прогностического объекта со снижением среднего квадрата ошибки (MSE.shift). Очевидно, такие случаи необходимо выделять и анализировать на основе последовательных карт.

В-третьих, значения почти всех квартилей таковы, что результирующее смещение не превышает 35 единиц, т. е. удовлетворяет выбранному выше критерию информативного прогноза объектов. А это значит, что не менее половины объектов установленного размера (не менее 35×35 точек сетки) прогнозируются в течение часа (на самом деле – до полутора часов) без потери пересечения, если предполагать формы объектов в основном выпуклыми и обладающими в приближении эллипсами с небольшим эксцентриситетом. Впрочем, именно такое свойство объектов учитывалась при визуальном отборе ситуаций.

3.3. Суммарный анализ смещения прогностических объектов по непрерывному периоду времени

Небольшое количество предварительных программных условий и соответствующее определение настроечных параметров SpatialVx позволяют организовать расчет оценок пространственной верификации в потоке по любому периоду составления прогнозов без выделения особых ситуаций. Очевидно, в таком случае оценки будут относиться к периоду времени, а не к конкретным погодным процессам.

Рассмотрим в этой связи ситуацию с ураганом 29 мая и приведем результаты анализа всех прогнозов между 14.00 и 17.50 ч ВСВ. В этом интервале были составлены последовательно 20 прогнозов на 2,5 часа с 10минутной дискретностью. Некоторые сроки были пропущены из-за проблем с поступлением начальных данных. На разных заблаговременностях пакетом SpatialVx выделены от 20 до 25 пар объектов, для которых рассчитываются сдвиги (x_shift, y_shift) и квадраты ошибок (MSE.*). По наборам сдвигов рассчитаны суммарные характеристики, которые представлены в табл. 10.

Можно сформулировать некоторые выводы, касающиеся способности схемы STEPS прогнозировать объекты в условиях высокой скорости ветра и рекордных порывов.

Ошибки прогноза положения оказываются более высокими по сравнению с ранее рассмотренными примерами оценок сдвигов по ситуациям. По характеру распределения они сильно асимметричны, с систематическими изменениями в экстремальных значениях: минимальная ошибка расположения с ростом заблаговременности по осям х и у снижается, а максимальная ошибка по оси х заметно растет.

По выбранному критерию информативности прогноза удовлетворительными на сроках до часа времени можно считать лишь более четверти, но менее половины выделенных объектов. При этом основная ошибка заключается в прогнозе положения по долготе (x_shift), в то время как по широте ошибка положения с ростом заблаговременности, напротив, снижается вплоть до конца прогностического срока. Таблица 10. Суммарные характеристики сдвигов объектов при прогнозировании полей осадков по данным радара RAVN (Внуково) 29 мая 2017 г. за период времени 14.00–17.50 ч ВСВ

		-	-		-	
ilead	min	q25	med	mean	q75	max
x_shift						
1	-39.300	3.995	15.710	15.891	22.760	63.820
2	-15.100	2.655	14.340	20.760	35.483	76.830
3	-15.830	3.920	14.790	20.436	28.998	96.520
4	-19.350	-0.630	15.390	19.764	29.590	97.720
5	-18.650	-1.660	23.230	24.665	39.590	90.920
6	-12.370	14.400	26.490	31.927	46.270	93.130
7	-15.430	14.540	31.700	31.752	41.480	86.900
8	-4.180	16.230	41.575	41.001	60.500	96.770
9	-5.050	18.570	48.220	44.778	76.655	89.470
10	-5.940	17.560	38.760	42.989	70.957	93.960
11	-7.830	18.488	46.730	45.940	74.257	96.670
12	-6.000	23.300	51.600	45.918	65.990	98.430
13	-7.640	21.390	56.130	51.896	87.970	106.240
14	-8.880	25.998	50.935	48.706	76.965	107.870
15	-13.790	24.670	56.830	51.808	87.780	105.850
y_shift						
1	-55.220	-20.220	9.220	2.662	28.600	49.500
2	-42.790	-10.445	11.045	9.640	36.075	49.430
3	-42.290	2.345	13.380	12.731	31.330	50.690
4	-34.230	-12.140	12.290	11.856	36.580	55.710
5	-24.840	-4.540	19.900	14.033	28.140	55.360
6	-39.330	-9.610	17.130	14.368	29.850	57.770
7	-34.780	-2.650	16.190	16.381	28.680	69.500
8	-36.510	4.805	23.465	18.985	29.200	64.460
9	-30.700	0.180	17.190	13.951	24.317	76.270
10	-30.800	5.178	16.470	18.278	26.383	77.370
11	-31.410	-6.880	14.450	11.659	21.168	77.000
12	-39.460	-1.950	15.860	16.544	20.270	80.060
13	-12.210	4.220	12.950	13.860	19.250	57.370
14	-19.850	2.518	15.115	13.120	19.345	53.360
15	-28 440	1 240	8 780	7 797	16 210	34 000

Table 10. Summary characteristics of object shifts during precipitation nowcastingbased on RAVN radar data (Vnukovo) in the 29.05.2017_14.00–17.50 period

Выводы

1. Разработана первая отечественная технология оперативного наукастинга осадков с использованием последовательности данных ДМРЛ-С на срок до двух часов с 10-минутной дискретностью и 10-минутным обновлением. Проведено испытание развернутой системы в теплый период года (май – сентябрь 2017 г.) с точечной и пространственной верификацией качества прогнозов по зонам обзора девяти радаров территории ЕТР.

2. Результаты верификации прогнозов относительно радарных наблюдений показали информативность наукастинга осадков на интервале одного-полутора часов как в точках выделенной сетки, так и по крупным областям сильных осадков. Статистически обеспечены для точечных оценок лишь осадки интенсивностью ≥ 4 мм/ч, а верификация категорий более сильных осадков требует и б*о*льших объемов данных, и иных характеристик качества.

3. На основе набора проанализированных ситуаций можно сделать несколько предварительных выводов о качестве прогноза объектов. Вопервых, не менее половины объектов размером 35×35 точек сетки (и больше) по выбранному критерию пересечения удовлетворительно прогнозируются на интервале примерно до полутора часов. Во-вторых, для разных локаторов отмечаются систематические ошибки, которые возможно учесть в процедурах коррекции.

4. Почти для всех радаров в отдельных и суммарных полях существуют систематические особенности, которые критично влияют на качество наукастинга и на полученные результаты верификации. Систематизировать такие особенности, учесть их в системах коррекции наукастинга или в модернизации схемы STEPS возможно только при тесном взаимодействии со специалистами по радарной метеорологии.

Благодарности/Acknowledgements

Авторы выражают признательность специалистам ЦАО Ю.Б. Павлюкову, А.А. Шумилину и А.В. Травову за подготовку полей радарных данных и организацию оперативного потока этой информации в Гидрометцентр России. Авторы благодарят А.Р. Иванову за ценные замечания и советы при подготовке статьи к печати.

The authors are grateful to the specialists CAO Y.B. Pavlukov, A.A. Shumilin, A.V. Travov for the preparation of radar data fields and for the transfer of this information to the Hydrometcenter of Russia. Thanks are also extended to A.R. Ivanova for helpful discussion.

От редакции

Решением Центральной методической комиссии по гидрометеорологическим и гелиогеофизическим прогнозам (ЦМКП) от 01.12.2017 г. рекомендовано:

– внедрить в оперативную практику ФГБУ «Гидрометцентр России» в качестве основной «Технологию наукастинга интенсивности осадков на срок до 90 минут в теплый период года».

В соответствии с решением ЦМКП от 1 декабря 2017 г. технология наукастинга интенсивности осадков на срок до 90 минут в теплый период года внедрена в оперативную практику ФГБУ «Гидрометцентр России». (Акт внедрения №2-ЦМКП/2018 от 27.02.2018).

Список литературы

1. Абдуллаев С.М. Жизненный цикл мезомасштабных конвективных систем: концепция, климатология и прогноз: Дис. ... докт. геогр. наук. М, 2010, 408 с.

2. Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. М.: Наука, 1983. 416 с.

3. *ВМО-№* 485. Наставление по глобальной обработке данных и прогнозирования. Том 1. Глобальные аспекты. (Дополнение к IV Техническому регламенту ВМО). Женева: ВМО, 2010.

4. Временные методические указания по использованию информации доплеровского метеорологического локатора ДМРЛ-С в синоптической практике: 2-я редакция. М.: Росгидромет, 2017. 121 с.

5. Иванова А.Р., Шакина Н.П. Перспективы развития наукастинга для метеорологического обеспечения авиации в рамках реализации Глобального аэронавигационного плана (ГАНП) // Труды Гидрометцентра России. 2016. Вып. 360. С. 113-134.

6. Муравьев А.В., Д.Б. Киктев, Бундель А.Ю., Дмитриева Т.Г., Смирнов А.В. Верификация прогнозов метеорологических явлений со значительными воздействиями в районе проведения Олимпиады «Сочи-2014». Часть І. Детерминированные прогнозы в тестовый период // Метеорология и гидрология. 2015. № 9. С. 31-48.

7. *Bowler N., Pierce C., Seed A.* STEPS: A probabilistic precipitation forecasting scheme which merges an extrapolation nowcast with downscaled NWP // Q. J. R. Meteorol. Soc. 2006. Vol. 132. P. 2127-2155.

8. *Ebert E.E.* Suggested methods for the verification of precipitation forecasts against high resolution limited area observations (JWGFVR). Geneva, Switzerland: WMO, November 2013.

9. *Ebert E.E., McBride J.L.* Verification of precipitation in weather systems: Determination of systematic errors // J. Hydrology. 2000. Vol. 239. P. 179-202.

10. Forecast Verification. A Practitioner's Guide in Atmospheric Science // I.T. Jolliffe, D.B. Stephenson (Eds). John Wiley & Sons Ltd, 2012. 274 p.

11. *Gilleland E*. Confidence Intervals for Forecast Verification. NCAR Technical Note NCAR/TN-479+STR, 2010. DOI:10.5065/D6WD3XJM.

12. *Recommendations* for the Verification and Intercomparison of QPFS and PQPFS from Operational NWP Models. Revision 2. WWRP/WGNE Joint Working Group on Verification // WMO/TD-No. 1485. Geneva, Switzerland: WMO, October 2008. 43 p.

13. Schertzer D., Lovejoy S. Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes // J. Geophys. Res. 1987. Vol. 92. P. 9692–9714.

References

1. *Abdullaev S.M.* Zhiznennyj cikl mezomasshtabnyh konvektivnyh sistem: koncepciya, klimatologiya i pro-gnoz: dissertacii kandidata geograficheskih nauk. Moscow, 2010, p. 408 [in Russ.].

2. Bol'shev L.N. Tablicy matematicheskoj statistiki. Moscow, Nauka Publ., 1983, p. 416 [in Russ.].

3. *WMO-No.* 485. Manual on the Global Data-processing and Forecasting System. Vol. I – Global Aspects. (Annex IV to WMO Technical Regulations). Geneva, WMO, 2010.

4. Vremennye metodicheskie ukazaniya po ispol'zovaniyu informacii doplerovskogo meteoro-logicheskogo lokatora DMRL-S v sinopticheskoj praktike: 2 redakciya. Moscow, Rosgidromet, 2017, 121 p. [in Russ.].

5. *Ivanova A.R., Shakina N.P.* Perspektivy razvitiya naukastinga dlya meteorologicheskogo obespecheniya aviacii v ramkah realizacii Global'nogo aehronavigacionnogo plana (GANP) [Future development of nowcasting for aviation meteorological service in the framework of Global aeronavigation plan (GANP) implementation]. *Trudy Gidrometcentra Rossii* [Proceedings of the Hydrometcenter of Russia], 2016, vol. 360, pp. 113-134 [in Russ.].

6. Murav'ev A. V., Kiktev D. B., Bundel' A. Yu., Dmitrieva T. G., Smirnov A. V. Verification of high-impact weather event forecasts for the region of the Sochi-2014 Olympic Games. Part I: Deterministic forecasts during the test period. *Russ. Meteorol. Hydrol.*, 2015, vol. 40, no. 9, pp. 584-597, DOI: 10.3103/S1068373915090034.

7. Bowler N., Pierce C., Seed A. STEPS: A probabilistic precipitation forecasting scheme which merges an extrapolation nowcast with downscaled NWP. Q. J. R. Meteorol. Soc., 2006, vol. 132, pp. 2127-2155, DOI: 10.1256/qj.04.100.

8. Ebert E.E. Suggested methods for the verification of precipitation forecasts against high resolution limited area observations (JWGFVR). Geneva, Switzerland: WMO, November 2013.

9. *Ebert E.E., McBride J.L.* Verification of precipitation in weather systems: Determination of systematic errors. *J. Hydrology*, 2000, vol. 239, pp. 179-202, DOI: 10.1016/S0022-1694(00)00343-7.

10. Forecast Verification. A Practitioner's Guide in Atmospheric Science. I.T. Jolliffe, D.B. Stephenson (Eds). John Wiley & Sons Ltd Publ., 2012, 274 p.

11. Gilleland E. Confidence Intervals for Forecast Verification. NCAR Technical Note NCAR/TN-479+STR. 2010, DOI: 10.5065/D6WD3XJM.

12. Recommendations for the Verification and Intercomparison of QPFS and PQPFS from Operational NWP Models. Revision 2. WWRP/WGNE Joint Working Group on Verification. WMO/TD-No. 1485, Geneva, Switzerland, WMO, October 2008, 43 p.

13. *Schertzer D., Lovejoy S.* Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes. *J. Geophys. Res.*, 1987, vol. 92, no. D8, pp. 9693–9714, DOI: 10.1029/JD092iD08p09693.

> Поступила в редакцию 17.11.2017 г. Received by the editor 17.11.2017.